Using Opposition Golden Jackal Optimization Algorithm (OGJO) in Improving Some Kernel Semiparametric Models: A Comparative Study

Dalia Mahfood Abdulhadi (1), Husam Abdulrazzak Rasheed (2)
(1) Faculty of Administration and Economics, Mustansiriyah University, Baghdad, Iraq
(2) Faculty of Administration and Economics, Mustansiriyah University, Baghdad, Iraq
Fulltext View | Download
How to cite (IJASEIT) :
[1]
D. M. Abdulhadi and H. A. Rasheed, “Using Opposition Golden Jackal Optimization Algorithm (OGJO) in Improving Some Kernel Semiparametric Models: A Comparative Study”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 2, pp. 478–484, Apr. 2025.
Recent research and studies show widespread interest in semiparametric regression model analysis, which combines parametric and nonparametric components. This interest is because it gives accurate and effective statistical model estimates. This paper proposes to improve estimates of semiparametric regression models using opposition-based learning technology on the golden Jackal Optimization algorithm to increase the accuracy of these models, accelerate convergence, and expand the exploration area. The effectiveness of using this algorithm was evaluated by comparing it with the original algorithm before optimization and the most commonly used methods for estimating the model statistically, such as CV and GCV. Using simulation, the results showed that the improvement in the OBL-GJO algorithm in terms of accuracy and convergence speed outperformed the original algorithm and traditional methods by a large margin in calculating the simulation results of the kernel semiparametric regression models. We strongly advocate for applying the GJO algorithm across various domains within machine learning, particularly in the realms of deep learning and reinforcement learning. Furthermore, we have employed enhanced and evolved algorithms to optimize semiparametric regression models effectively. To address the challenges encountered by any algorithm operating within a vast search landscape, we suggest an in-depth exploration of optimization techniques and integrating diverse algorithms, which could lead to more robust and efficient solutions.

C. Yang, Y. Gao, W. Guo, Y. Yang, P. Xu, and M. S. Alqahtani, “High-velocity impact behaviour of curved GFRP composites for rail vehicles: Experimental and numerical study,” Polym. Test., vol. 116, p. 107774, Dec. 2022, doi: 10.1016/j.polymertesting.2022.107774.

F. Chen, Y. Peng, X. Chen, K. Wang, Z. Liu, and C. Chen, “Investigation of the Ballistic Performance of GFRP Laminate under 150 m/s High-Velocity Impact: Simulation and Experiment,” Polymers (Basel)., vol. 13, no. 4, p. 604, Feb. 2021, doi:10.3390/polym13040604.

E. Admasu, S. J. Thirgood, A. Bekele, and M. Karen Laurenson, “Spatial ecology of golden jackal in farmland in the Ethiopian Highlands,” Afr. J. Ecol., vol. 42, no. 2, pp. 144–152, Jun. 2004, doi:10.1111/j.1365-2028.2004.00497.x.

E. Akdeniz, F. Akdeniz, and M. Roozbeh, “A new difference-based weighted mixed Liu estimator in partially linear models,” Statistics (Ber)., vol. 52, no. 6, pp. 1309–1327, Nov. 2018, doi:10.1080/02331888.2018.1511715.

M. Amini and M. Roozbeh, “Optimal partial ridge estimation in restricted semiparametric regression models,” J. Multivar. Anal., vol. 136, pp. 26–40, Apr. 2015, doi: 10.1016/j.jmva.2015.01.005.

S. Chen and X. Zhou, “Semiparametric estimation of a truncated regression model,” J. Econom., vol. 167, no. 2, pp. 297–304, Apr. 2012, doi: 10.1016/j.jeconom.2011.09.016.

S. H. Chiou, C. Huang, G. Xu, and J. Yan, “Semiparametric Regression Analysis of Panel Count Data: A Practical Review,” Int. Stat. Rev., vol. 87, no. 1, pp. 24–43, Apr. 2019, doi:10.1111/insr.12271.

N. Chopra and M. Mohsin Ansari, “Golden jackal optimization: A novel nature-inspired optimizer for engineering applications,” Expert Syst. Appl., vol. 198, p. 116924, Jul. 2022, doi:10.1016/j.eswa.2022.116924.

E. A. Duran and F. Akdeniz, “New difference-based estimator of parameters in semiparametric regression models,” J. Stat. Comput. Simul., vol. 83, no. 5, pp. 810–824, May 2013, doi:10.1080/00949655.2011.638633.

E. Ghysels and H. Qian, “Estimating MIDAS regressions via OLS with polynomial parameter profiling,” Econom. Stat., vol. 9, pp. 1–16, Jan. 2019, doi: 10.1016/j.ecosta.2018.02.001.

R. Guha, M. Ghosh, A. Chakrabarti, R. Sarkar, and S. Mirjalili, “Introducing clustering based population in Binary Gravitational Search Algorithm for Feature Selection,” Appl. Soft Comput., vol. 93, p. 106341, Aug. 2020, doi: 10.1016/j.asoc.2020.106341.

W. Härdle, Nonparametric and semiparametric models. Springer Science & Business Media, 2004.

U. Lee, Y. Sun, T. H. Scheike, and P. B. Gilbert, “Analysis of generalized semiparametric regression models for cumulative incidence functions with missing covariates,” Comput. Stat. Data Anal., vol. 122, pp. 59–79, Jun. 2018, doi: 10.1016/j.csda.2018.01.003.

C. A. Micchelli, M. Pontil, and P. Bartlett, “Learning the Kernel Function via Regularization.,” J. Mach. Learn. Res., vol. 6, no. 7, 2005.

Y. Qin, S. Zhang, X. Zhu, J. Zhang, and C. Zhang, “Semi-parametric optimization for missing data imputation,” Appl. Intell., vol. 27, no. 1, pp. 79–88, Jun. 2007, doi: 10.1007/s10489-006-0032-0.

P. M. Robinson, “Large-sample inference for nonparametric regression with dependent errors,” Ann. Stat., vol. 25, no. 5, pp. 2054–2083, 1997.

M. Roozbeh, “Shrinkage ridge estimators in semiparametric regression models,” J. Multivar. Anal., vol. 136, pp. 56–74, Apr. 2015, doi:10.1016/j.jmva.2015.01.002.

M. Roozbeh, G. Hesamian, and M. G. Akbari, “Ridge estimation in semi-parametric regression models under the stochastic restriction and correlated elliptically contoured errors,” J. Comput. Appl. Math., vol. 378, p. 112940, Nov. 2020, doi: 10.1016/j.cam.2020.112940.

C. Schramm, S. Jacquemont, K. Oualkacha, A. Labbe, and C. M. T. Greenwood, “KSPM: A Package For Kernel Semi-Parametric Models,” 2020.

I. O. Bachi Al-Fahad, H. K. Sharaf, L. N. Bachache, and N. K. Bachache, “Identifying the Mechanism of the Fatigue Behavior of the Composite Shaft Subjected to Variable Load,” Eastern-European J. Enterp. Technol., vol. 123, no. 7, 2023.

L. T. Mouhmmd, M. A. Rahima, A. M. Mohammed, H. F. Hasan, A. S. Alwan, and H. K. Sharaf, “The effect of firm type on the relationship between accounting quality and trade credit in listed firms,” Corp. Bus. Strateg. Rev., vol. 4, no. 2, pp. 175–183, Apr. 2023, doi:10.22495/cbsrv4i2art16.

H. A. Saleh, A. R. Ali, A. N. S. Almshabbak, H. K. Sharaf, H. F. Hasan, and A. S. Alwan, “The impact of auditor-client range on audit quality and timely auditor report,” Corp. Bus. Strateg. Rev., vol. 5, no. 1, special Issue, pp. 329–335, Feb. 2024, doi: 10.22495/cbsrv5i1siart7.

P. M. Robinson, “Root-N-Consistent Semiparametric Regression,” Econometrica, vol. 56, no. 4, p. 931, Jul. 1988, doi: 10.2307/1912705.

E. Rouza and F. Arifin, “Essential Advances in Soil-Transmitted Helminth Detection Using Machine Learning and Deep Learning: A Systematic Review.,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 6, 2024.

B. A. Sadkhan, E. J. Yousif, A. T. Shomran, E. K. Hussein, and H. K. Sharaf, “Investigation of the Impact Response of Plain Weave E-Glass Composite Structure Based on the EN ISO 178 Standard,” J. Adv. Res. Appl. Mech., vol. 117, no. 1, pp. 118–127, 2024.

I. O. Bachi Al-Fahad, A. D. Hassan, B. M. Faisal, and H. K. Sharaf, “Identification of Regularities in the Behavior of a Glass Fiber-Reinforced Polyester Composite of the Impact Test Based on ASTM D256 Standard,” Eastern-European J. Enterp. Technol., vol. 124, no. 7, 2023.

J. H. Connell and S. Mahadevan, Eds., Robot Learning. Boston, MA, USA: Kluwer, 1993/1997. [Book Review]. Robotica, vol. 17, no. 2, pp. 229-235, 1999, doi: 10.1017/S0263574799271172.

M. Taavoni and M. Arashi, “Kernel estimation in semiparametric mixed effect longitudinal modeling,” Stat. Pap., vol. 62, no. 3, pp. 1095–1116, Jun. 2021, doi: 10.1007/s00362-019-01125-8.

T. Zhang, “Semiparametric model building for regression models with time-varying parameters,” J. Econom., vol. 187, no. 1, pp. 189–200, Jul. 2015, doi: 10.1016/j.jeconom.2015.02.021.

S. Yang, J. Wang, X. Cheng, J. Wu, and J. Liu, “Quality design based on kernel trick and Bayesian semiparametric model for multi-response processes with complex correlations,” Int. J. Prod. Res., vol. 62, no. 12, pp. 4407–4426, Jun. 2024, doi: 10.1080/00207543.2023.2262065.

I. Pantelić, N. Bogdanović, S. Breck, and D. Ćirović, “Temporal trends of home range sizes and movement patterns of peri-urban golden jackals in Belgrade, Serbia,” Hystrix, Ital. J. Mammal., 2024.

S. K. Venkatachary, A. Alagappan, and L. J. B. Andrews, “Cybersecurity challenges in energy sector (virtual power plants) - can edge computing principles be applied to enhance security?,” Energy Informatics, vol. 4, no. 1, p. 5, Dec. 2021, doi: 10.1186/s42162-021-00139-7.

I. O. B. Al-Fahad and H. K. Sharaf, “Investigation of the Effect of Heat Transfer during Friction Stir Welding (FSW) of AZ80A Mg Alloy Plates using a Pin Tool by Conducting Finite Elements Analysis,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 117, no. 1, pp. 98–108, 2024.

M. Montaseri, M. Rezaei, A. Khayati, S. Mostafaei, and M. Taheri, “Survival parametric modeling for patients with heart failure based on Kernel learning,” BMC Med. Res. Methodol., vol. 25, no. 1, p. 7, Jan. 2025, doi: 10.1186/s12874-024-02455-4.

X. Zhao, Y. Rong, J. Lin, M. Tian, and J. Liang, “Double sparsity garrotized kernel machine in high-dimensional partially linear model,” Commun. Stat. - Simul. Comput., pp. 1–16, Mar. 2024, doi:10.1080/03610918.2024.2329244.

H. D. Salman, A. Q. Saeed, E. K. Hussein, H. K. Sharaf, T. Santos, and C. Santos, “Comparative Study on the Creep Behavior of a Hybrid Composite Material Doped with Nano Material,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 6, pp. 1951–1956, Dec. 2024, doi:10.18517/ijaseit.14.6.15958.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).