The Effects of Alloying Elements on the Microstructure of Al-Zn alloy
How to cite (IJASEIT) :
X. D. Pham, A. T. Hoang, D. N. Nguyen, and V. V. Le, “Effect of factors on the hydrogen composition in the carburizing process,” Int. J. Appl. Eng. Res., vol. 12, no. 19, pp. 8238–8244, 2017.
D. N. Nguyen, A. T. Hoang, X. D. Pham, M. T. Sai, M. Q. Chau, and V. V. Pham, “Effect of sn component on properties and microstructure CU-NI-SN alloys,” J. Teknol., vol. 80, no. 6, pp. 43–51, 2018, doi:10.11113/jt.v80.11867.
M. Abid, M. Kchaou, A. T. Hoang, and M. Haboussi, “Wear Mechanisms Analysis and Friction Behavior of Anodic Aluminum Oxide Film 5083 under Cyclic Loading,” J. Mater. Eng. Perform., vol. 33, no. 3, pp. 1527–1537, Aug. 2024, doi: 10.1007/s11665-023-08616-8.
X. . Pham, A. . Hoang, and D. . Nguyen, “A study on the effect of the change of tempering temperature on the microstructure transformation of Cu-Ni-Sn alloy,” Int. J. Mech. Mechatronics Eng., vol. 18, no. 4, pp. 27–34, 2018.
D.-T. Vo, D.-N. Nguyen, M.-T. Sai, Z. Said, X.-P. Nguyen, and D.-T. Nguyen, “A study of microstructure and properties of Cu-Ni-Sn alloy when deformation and aging,” in 2022 Advances in Science and Engineering Technology International Conferences (ASET), 2022, pp. 1–6.
N. V. L. Le, D. N. Nguyen, A. T. Vu, D. T. Nguyen, and T. T. T. Tran, “Review on bainite phase transformation and mechanism in CMnSi steel,” in AIP Conference Proceedings, 2023, vol. 2591, no. 1, p. 030082. doi: 10.1063/5.0119759.
H. Thi, N. Quyen, V. A. Tuan, T. P. Dong, V. V. Quyen, and N. D. Nam, “Effect of Rare Earth on M7C3 Eutectic Carbide in 13 % Chromium Alloy Cast Iron,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 2, pp. 724–728, 2019.
D.-T. Vo, D.-N. Nguyen, T.-D. Nguyen, X.-P. Nguyen, Z. Said, and D.-T. Nguyen, “Influence of diffusion mode on microstructure and mechanical properties of carbonitriding layer,” in 2022 Advances in Science and Engineering Technology International Conferences (ASET), 2022, pp. 1–7.
A. Tuan Hoang et al., “Thermodynamic Simulation on the Change in Phase for Carburizing Process,” Comput. Mater. Contin., vol. 68, no. 1, pp. 1129–1145, 2021, doi: 10.32604/cmc.2021.015349.
T. Xuan Tran et al., “Effect of Poly-Alkylene-Glycol Quenchant on the Distortion, Hardness, and Microstructure of 65Mn Steel,” Comput. Mater. Contin., vol. 67, no. 3, pp. 3249–3264, 2021, doi:10.32604/cmc.2021.015411.
P. K. Mallick, “Advanced materials for automotive applications: an overview,” in Advanced Materials in Automotive Engineering, Elsevier, 2012, pp. 5–27. doi: 10.1533/9780857095466.5.
T. N. Le, M. K. Pham, A. T. Hoang, T. N. M. Bui, and D. N. Nguyen, “Microstructure change for multi-pass welding between Austenitic stainless steel and carbon steel,” J. Mech. Eng. Res. Dev., vol. 41, no. 2, pp. 97–102, Jan. 2018, doi: 10.26480/jmerd.02.2018.97.102.
T. N. Le, M. K. Pham, A. T. Hoang, and D. N. Nguyen, “Microstructures And Elements Distribution In The Transition Zone Of Carbon Steel And Stainless Steel Welds,” J. Mech. Eng. Res. Dev., vol. 41, no. 3, pp. 27–31, Sep. 2018, doi:10.26480/jmerd.03.2018.27.31.
A. . Hoang, V. . Le, A. . Nguyen, and D. . Nguyen, “A study on the changes in microstructure and mechanical properties of multi-pass welding between 316 stainless steel and low-carbon steel,” J. Adv. Manuf. Technol., vol. 12, no. 2, pp. 25–40, 2018.
M. K. Pham, D. N. Nguyen, and A. T. Hoang, “Influence of Vanadium Content on the Microstructure and Mechanical Properties of High-Manganese Steel,” Int. J. Mech. Mechatronics Eng., vol. 18, no. 2, pp. 141–147, 2018.
A. Hoang, D. N. Nguyen, and V. Pham, “Heat treatment furnace for improving the weld mechanical properties: Design and fabrication,” Int. J. Mech. Eng. Technol., vol. 9, no. 6, pp. 496–506, 2018.
A. T. Hoang, T. T. Van Tran, V. B. Nguyen, and D. N. Nguyen, “Effect of Heat Treatment Process on The Microstructure and Mechanical Properties of The Spray Coating Ni-Cr on CT38 Steel,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 2, pp. 560–568, Mar. 2019, doi:10.18517/ijaseit.9.2.7891.
P. K. Krajewski, A. L. Greer, and W. K. Krajewski, “Main Directions of Recent Works on Al-Zn-Based Alloys for Foundry Engineering,” J. Mater. Eng. Perform., vol. 28, no. 7, pp. 3986–3993, Jul. 2019, doi:10.1007/s11665-019-04048-5.
Z. Song et al., “Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys,” Acta Mater., vol. 246, p. 118671, 2023.
Y. Reda, H. M. Yehia, and A. M. El-Shamy, “Microstructural and mechanical properties of Al-Zn alloy 7075 during RRA and triple aging,” Egypt. J. Pet., vol. 31, no. 1, pp. 9–13, 2022.
V. N. Chuvil’deev et al., “Investigation of mechanical properties and corrosion resistance of fine-grained aluminum alloys Al-Zn with reduced zinc content,” J. Alloys Compd., vol. 891, p. 162110, Jan. 2022, doi: 10.1016/j.jallcom.2021.162110.
J. J. Xiao, C. Y. Liu, and K. Cao, “Effects of Cold Rolling on the Microstructure and Mechanical Properties of High-Zn-Content Al-Zn-Mg-Sc Alloys,” J. Mater. Eng. Perform., vol. 33, no. 3, pp. 1250–1261, 2024.
C. Xu, H. Teng, Y. Han, G. Jiang, H. Liu, and Y. Hu, “Experimental investigation and kinetic analysis of Al–Zn–Mg alloy coating,” Calphad, vol. 84, p. 102655, 2024.
C. Chen et al., “Phase transformation in Al/Zn multilayers during mechanical alloying,” Acta Metall. Sin. (English Lett., vol. 36, no. 10, pp. 1709–1718, 2023.
E. AbdElRhiem, M. M. Mostafa, R. H. Nada, S. G. Mohamed, Y. F. Barakat, and S. M. Abdelaziz, “Effects of TiO2, CuO, and SiO2 nanoparticles addition on the microstructure and mechanical properties of Al-10 wt% Zn alloy,” Phys. Scr., vol. 98, no. 6, p. 65018, 2023.
Q. Li, X. Ma, X. Zhang, J. Ma, X. Hu, and Y. Lan, “Microencapsulation of Al-Zn alloy as phase change materials for high-temperature thermal storage application,” Mater. Lett., vol. 308, p. 131208, 2022.
A. M. Abdel-Karim, A. M. El-Shamy, and Y. Reda, “Corrosion and stress corrosion resistance of Al Zn alloy 7075 by nano-polymeric coatings,” J. Bio-and Tribo-Corrosion, vol. 8, no. 2, p. 57, 2022.
C. Chen and H. Zhang, “Characteristics of friction and wear of Al-Zn-Mg-Cu alloy after application of ultrasonic shot peening technology,” Surf. Coatings Technol., vol. 423, p. 127615, 2021.
N. Li, Z. Wei, W. Zhao, S. Yan, D. Liu, and Q. Jiao, “Improved ignition and combustion performance of Al-Zn-Mg ternary alloys by incorporating Mg into Al-Zn alloys,” Chem. Eng. J., p. 153237, 2024.
M. N. Borse, R. Bauri, and S. Shankar, “Study of microstructure evolution of friction stir welded novel (Al-Zn-Mg)-Fe (HE700) cast alloys for automotive applications,” Mater. Sci. Eng. A, vol. 879, p. 145274, 2023.
R. G. Guan and D. Tie, “A review on grain refinement of aluminum alloys: Progresses, challenges and prospects,” Acta Metall. Sin. (English Lett., vol. 30, no. 5, pp. 409–432, 2017, doi: 10.1007/s40195-017-0565-8.
Z. R. Nie et al., “Advanced aluminum alloys containing rare-earth erbium,” Mater. Forum, vol. 28, pp. 197–201, 2004.
N. LEY, “Superplasticity in structural materials,” Deform. Process. Struct. Mater., p. 284, 2005.
J. P. Abeysinghe and E. G. Gillan, “Thermochemical reaction strategies for the rapid formation of inorganic solid-state materials,” in Dynamic Processes in Solids, Elsevier, 2023, pp. 51–95.
F. Czerwinski, “Thermal stability of aluminum alloys,” Materials (Basel)., vol. 13, no. 15, p. 3441, 2020.
N. H. Dung, Modification of Aluminum alloy, no. 04. Bach Khoa Publishing House, 2018.
N. H. Hải, Rheocassting. Bach Khoa Publishing House, 2017.
S. Kord, M. Alipour, M. H. Siadati, M. Kord, and P. G. Koppad, “Effects of extrusion and heat treatment conditions on microstructure and mechanical properties of an Al–Zn–Mg–Cu–Er alloy,” in Minerals, Metals and Materials Series, 2018, vol. Part F4, pp. 1–26. doi: 10.1007/978-3-319-72284-9_61.
H. Fang, H. Yang, J. Zhu, P. Xiao, Z. Chen, and T. Liu, “Effect of Minor Cr, Mn, Zr or Ti on Recrystallization, Secondary Phases and Fracture Behaviour of Al-Zn-Mg-Cu-Yb Alloys,” Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., vol. 49, no. 3, 2020.
G. R. Huang, Y. M. Sun, L. Zhang, and Y. L. Liu, “Effect of Trace Ce on Microstructure and Properties of Near-rapidly Solidified Al-Zn-Mg-Cu Alloys,” Cailiao Gongcheng/Journal Mater. Eng., vol. 46, no. 3, pp. 105–111, 2018, doi: 10.11868/j.issn.1001-4381.2016.000869.
S. K. Tian, J. Y. Li, J. L. Zhang, and D. Lü, “Effect of Sc on the microstructure and properties of 7056 aluminum alloy,” Gongcheng Kexue Xuebao/Chinese J. Eng., vol. 41, no. 10, 2019, doi:10.13374/j.issn2095-9389.2018.10.22.003.
P. S. Mohanty and J. E. Gruzleski, “Mechanism of grain refinement in aluminium,” Acta Metall. Mater., vol. 43, no. 5, pp. 2001–2012, 1995, doi: 10.1016/0956-7151(94)00405-7.
I. Z. Awan and A. Q. Khan, “Recovery, recrystallization, and grain-growth,” J. Chem. Soc. Pakistan, vol. 41, no. 1, 2019, doi:10.52568/000707/jcsp/41.01.2019.
S. Li, Z. Huang, and S. Jin, “Superplastic behavioral characteristics of fine-grained 5A70 aluminum alloy,” Metals (Basel)., vol. 9, no. 1, pp. 1–21, 2019, doi: 10.3390/met9010062.
L. Bhatta, A. Pesin, A. P. Zhilyaev, P. Tandon, C. Kong, and H. Yu, “Recent development of superplasticity in aluminum alloys: A review,” Metals, vol. 10, no. 1. pp. 1–26, 2020. doi:10.3390/met10010077.
O. A. Yakovtseva, A. V. Mikhaylovskaya, A. V. Pozdniakov, A. D. Kotov, and V. K. Portnoy, “Superplastic deformation behaviour of aluminium containing brasses,” Mater. Sci. Eng. A, vol. 674, pp. 135–143, 2016, doi: 10.1016/j.msea.2016.07.053.
X. G. Wang, Q. S. Li, R. R. Wu, X. Y. Zhang, and L. Ma, “A Review on Superplastic Formation Behavior of Al Alloys,” Advances in Materials Science and Engineering, vol. 2018. pp. 1–18, 2018. doi:10.1155/2018/7606140.
A. Mikhaylovskaya, O. Yakovtseva, M. Sitkina, and A. D. Kotov, “Grain-boundary and intragranular deformation in ultrafine-grained aluminum-based alloy at high strain rate,” Mater. Lett., vol. 276, pp. 128242 (1–5), 2020, doi: 10.1016/j.matlet.2020.128242.
O. D. Sherby and J. Wadsworth, “Superplasticity and superplastic forming processes,” Mater. Sci. Technol., vol. 1, no. 11, pp. 925–936, Nov. 1985, doi: 10.1179/mst.1985.1.11.925.
Bui Thi Ngoc Mai, “Influence of rare earth on high ductility of Al-Zn-Mg-Cu alloy,” Hanoi University of Science and Technology, 2022.
George E. Dieter, Mechanical metallurgy. 1961.
Z. M. El-Baradie, “1998-Grain refining of Zn-22Al superplastic alloy.pdf,” Journal of Materials Processing Technology, vol. 84. pp. 73–78, 1998.
M. F. Ibrahim, “Effects of Be, Sr, Fe and Mg Interactions on the Microstructure and Mechanical Properties of Aluminum Based Aeronautical Alloys,” Université du Québec à Chicoutimi, 2015. [Online]. Available: https://constellation.uqac.ca/id/eprint/3021/
A. S. M. Handbook, Alloy Phase Diagram, vol. 3. 1992. doi:10.1007/BF02869318.
C. Tang, G. Zuo, Z. Li, X. Sun, and Q. Li, “An Overview on Alloying Research of Mg-Gd Alloys,” Cailiao Daobao/Materials Review, vol. 32, no. 11. pp. 3760–3767, 2018. doi: 10.11896/j.issn.1005-023X.2018.21.012.
W. D. Callister, Materials science and engineering: An introduction (2nd edition), vol. 12, no. 1. 1991. doi: 10.1016/0261-3069(91)90101-9.
K. Georgy, L. Neelakantan, K. C. H. Kumar, and M. Mukherjee, “Influence of Cu, Zn and Si alloying elements on Al alloy foams produced using Mg blowing agent,” J. Mater. Sci., vol. 56, no. 3, 2021, doi: 10.1007/s10853-020-05381-0.
M. Chemingui et al., “Effect of heat treatment on microstructure, hardening and plasticity of a commercial Al–Zn–Mg–Cu alloy,” Int. J. Mater. Res., vol. 109, pp. 1113–1121, 2018.
J. Drápala, G. Kostiuková, and M. Losertová, “Contribution to the aluminum-tin-zinc ternary system,” IOP Conf. Ser. Mater. Sci. Eng., vol. 266, no. 1, pp. 0–16, 2017, doi: 10.1088/1757-899X/266/1/012002.
Q. Zhou, X. Xu, S. Yin, and T. Han, “A novel strategy to enhance the mechanical properties and corrosion resistance of ultra-high strength Al-Zn-Mg-Cu alloy: Pre-recovery Multi-Stage Solution Treatment (P-MST),” Mater. Sci. Eng. A, vol. 912, p. 146964, 2024.
J. Chu, T. Lin, G. Wang, H. Fang, and D. Wang, “Effect of Heat Treatment on Microstructure and Properties of Al-7.0 Zn-1.5 Cu-1.5 Mg-0.1 Zr-0.1 Ce Alloy,” Metallogr. Microstruct. Anal., vol. 9, pp. 312–322, 2020.
A. Beigi Kheradmand, S. Mirdamadi, Z. Lalegani, and B. Hamawandi, “Effect of thermomechanical treatment of Al-Zn-Mg-Cu with minor amount of Sc and Zr on the mechanical properties,” Materials (Basel)., vol. 15, no. 2, p. 589, 2022.
Y. Dai, L. Yan, and J. Hao, “Review on micro-alloying and preparation method of 7xxx series aluminum alloys: progresses and prospects,” Materials (Basel)., vol. 15, no. 3, p. 1216, 2022.
A. B. Kheradmand, M. Tayebi, M. M. Akbari, and A. Abbasian, “Effect of quench-controlled precipitation hardening on microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr alloys contain of Sc micro-alloying,” J. Alloys Compd., vol. 902, p. 163748, 2022.
F. Jiang, J. Huang, Y. Jiang, and C. Xu, “Effects of quenching rate and over-aging on microstructures, mechanical properties and corrosion resistance of an Al–Zn–Mg (7046A) alloy,” J. Alloys Compd., vol. 854, p. 157272, 2021.
P. A. Rometsch, Y. Zhang, and S. Knight, “Heat treatment of 7xxx series aluminium alloys - Some recent developments,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 24, no. 7. Nonferrous Metals Society of China, pp. 2003–2017, 2014. doi:10.1016/S1003-6326(14)63306-9.
V. V. Bryukhovetsky, D. E. Myla, V. P. Poyda, and A. V. Poyda, “Effect of Homogenization on the Superplasticity and Microsuperplasticity of the Al-Zn-Mg-Cu Aluminum Alloy,” J. Nano- Electron. Phys., vol. 12, no. 6, pp. 06025-1-06025–8, 2020, doi:10.21272/jnep.12(6).06025.
M. T. Pérez-Prado, M. C. Cristina, O. A. Ruano, and G. González-Doncel, “Grain boundary sliding and crystallographic slip during superplasticity of Al-5%Ca-5%Zn as studied by texture analysis,” Materials Science and Engineering A, vol. 244, no. 2. pp. 216–223, 1998. doi: 10.1016/S0921-5093(97)00567-4.
H. Zhao et al., “Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy,” Acta Mater., vol. 156, pp. 318–329, 2018, doi: 10.1016/j.actamat.2018.07.003.
F. Carreño and O. A. Ruano, “Superplasticity of aerospace 7075 (Al-Zn-Mg-Cu) aluminium alloy obtained by severe plastic deformation,” Defect Diffus. Forum, vol. 385 DDF, pp. 39–44, 2018, doi:10.4028/www.scientific.net/DDF.385.39.
X. Z. Li, V. Hansen, J. Gjénnes, and L. R. Wallenberg, “HREM study and structure modeling of the Z’ phase, the hardening precipitates in commercial Al-Zn-Mg alloys,” Acta mater, vol. 47, no. 9, pp. 2651–2659, 1999.
R. xian YANG, Z. yi LIU, P. you YING, J. lin LI, L. hua LIN, and S. min ZENG, “Multistage-aging process effect on formation of GP zones and mechanical properties in Al–Zn–Mg–Cu alloy,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 26, no. 5, pp. 1183–1190, 2016, doi: 10.1016/S1003-6326(16)64221-8.
X. FAN, D. JIANG, Q. MENG, B. ZHANG, and T. WANG, “Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment,” Trans. Nonferrous Met. Soc. China, vol. 16, no. 3, pp. 577–581, Jun. 2006, doi: 10.1016/S1003-6326(06)60101-5.
G. Sha and A. Cerezo, “Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050),” Acta Mater., vol. 52, no. 15, pp. 4503–4516, Sep. 2004, doi: 10.1016/j.actamat.2004.06.025.
L. . Berg et al., “GP-zones in Al–Zn–Mg alloys and their role in artificial aging,” Acta Mater., vol. 49, no. 17, pp. 3443–3451, Oct. 2001, doi: 10.1016/S1359-6454(01)00251-8.
A. A. Alekseev, I. N. Fridlyander, and L. B. Ber, “Mechanisms of phase transformations under ageing in the alloys of Al-Zn-Mg-(Cu) system,” in Materials Science Forum, 2002, vol. 396–402, no. 2, pp. 821–826. doi: 10.4028/www.scientific.net/msf.396-402.821.
J. X. Zang, K. Zhang, and S. L. Dai, “Precipitation behavior and properties of a new high strength Al-Zn-Mg-Cu alloy,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. 11, pp. 2638–2644, Nov. 2012, doi: 10.1016/S1003-6326(11)61511-2.
L. L. Rokhlin, T. V. Dobatkina, N. R. Bochvar, and E. V. Lysova, “Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Zr-Sc system,” in Journal of Alloys and Compounds, Mar. 2004, vol. 367, no. 1–2, pp. 10–16. doi: 10.1016/j.jallcom.2003.08.003.
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, “Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys,” Acta Mater., vol. 58, no. 1, pp. 248–260, Jan. 2010, doi: 10.1016/j.actamat.2009.09.003.
M. Chemingui et al., “Effect of heat treatment on microstructure, hardening and plasticity of a commercial Al–Zn–Mg–Cu alloy,” Int. J. Mater. Res., vol. 109, no. 12, pp. 1113–1121, Dec. 2018, doi:10.3139/146.111709.
G. Fribourg, “Precipitation and plasticity couplings in a 7xxx aluminium alloy: application to thermomechanical treatments for distortion correction of aerospace component,” Institut National Polytechnique de Grenoble, 2010.
A. M. O. A. A. R. O. K. M. R. A. L. A. K. . Isadare D.A, “Effect of As-Cast Cooling on the Microstructure and Mechanical Properties of Age-Hardened 7000 Series Aluminium Alloy,” Int. J. Mater. Eng., vol. 2015, no. 1, pp. 5–9, 2015, doi: 10.5923/j.ijme.20150501.02.
Y. D. He, X. M. Zhang, and J. H. You, “Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 16, no. 5, pp. 1228–1235, 2006, doi: 10.1016/S1003-6326(06)60406-8.
T. G. L. Megumi Kawasaki, “Developing superplasticity and a deformation mechanism map for the Zn–Al eutectoid alloy processed by high-pressure torsion,” Mater. Sci. Eng. A, vol. 528, pp. 6140–6145, 2011.
V. Kodetová et al., “Phase transformations in commercial cold-rolled Al–Zn–Mg–Cu alloys with Sc and Zr addition,” J. Therm. Anal. Calorim., vol. 145, pp. 2991–3002, 2020, doi: 10.1007/s10973-020-09862-x.
A. Kishchik, A. Mikhaylovskaya, A. Kotov, and V. Portnoy, “Effect of homogenization treatment on superplastic properties of aluminum based alloy with minor Zr and Sc additions,” Defect Diffus. Forum, vol. 385 DDF, pp. 84–90, 2018, doi:10.4028/www.scientific.net/DDF.385.84.
J. Liu et al., “Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys,” J. Alloys Compd., vol. 657, pp. 717–725, 2016, doi:10.1016/j.jallcom.2015.10.122.
X. Zhang, Z. Wang, Z. Zhou, and J. Xu, “Influence of rare earth (Ce and La) addition on the performance of Al-3.0 wt%Mg alloy,” J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 32, no. 3, pp. 611–618, 2017, doi: 10.1007/s11595-017-1642-6.
R. Ohte, K. Yoshioka, T. Uesugi, Y. Takigawa, and K. Higashi, “Effects of Zr-addition on intergranular fracture of Al-Cu-Mg and Al-Zn-Mg-Cu alloys,” Keikinzoku/Journal Japan Inst. Light Met., vol. 69, no. 4, pp. 235–241, 2019, doi: 10.2464/jilm.69.235.
B. T. N. Mai, “Influence of Recrystallization Annealing on the Microstructure and Ductility of Al–Zn–Mg–Cu Alloy Added La, Ce,” Lect. Notes Mech. Eng., pp. 333–339, 2023, doi: 10.1007/978-3-031-31824-5_40.
R. K. Mahidhara and A. K. Mukherjee, “Mechanisms of cavity growth in a fine-grained 7475 Al superplastic alloy,” Materials and Design, vol. 16, no. 6. pp. 343–348, 1995. doi: 10.1016/0261-3069(96)00012-X.
H. Iwasaki, M. Mabuchi, and K. Higashi, “Plastic cavity growth during superplastic flow in AA 7475 Al alloy containing a small amount of liquid,” Acta Materialia, vol. 49, no. 12. pp. 2269–2275, 2001. doi:10.1016/S1359-6454(01)00124-0.
D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys. Chapman & Hall, 1992.
D. H. Shin, K. T. Park, and E. J. Lavernia, “High-temperature deformation in a superplastic 7475 Al alloy with a relatively large grain size,” Materials Science and Engineering A, vol. 201, no. 1–2. pp. 118–126, 1995. doi: 10.1016/0921-5093(95)09761-9.
A. L. Vasiliev et al., “Microstructural Peculiarities of Al-Rich Al-La-Ni-Fe Alloys,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 50, no. 4, pp. 1995–2013, 2019, doi: 10.1007/s11661-019-05127-x.
L. Li, T. T. Zhou, H. X. Li, C. Q. Chen, B. Q. Xiong, and L. K. Shi, “Effect of additional elements on aging behavior of Al-Zn-Mg-Cu alloys by spray forming,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 16, no. 3, pp. 532–538, 2006, doi: 10.1016/S1003-6326(06)60093-9.
Z. Geng, D. Xiao, and L. Chen, “Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys,” J. Alloys Compd., vol. 686, no. C, pp. 145–152, 2016, doi:10.1016/j.jallcom.2016.05.288.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).