Partial Least Square Regression for Nondestructive Determination of Sucrose Content of Healthy and Fusarium spp. Infected Potato (Solanum tuberosum L.) Utilizing Visible and Near-Infrared Spectroscopy
How to cite (IJASEIT) :
S. Wang, H. Tian, S. Tian, J. Yan, Z. Wang, and H. Xu, “Evaluation of dry matter content in intact potatoes using different optical sensing modes,” J. Food Meas. Charact., vol. 17, no. 3, pp. 2119–2134, 2023, doi: 10.1007/s11694-022-01780-w.
W. Food, World Food and Agriculture – Statistical Yearbook 2022. 2022. doi: 10.4060/cc2211en.
R. R. P. da Conceição et al., “Application of near-infrared hyperspectral (NIR) images combined with multivariate image analysis in the differentiation of two mycotoxicogenic Fusarium species associated with maize,” Food Chem., vol. 344, no. November 2020, 2021, doi: 10.1016/j.foodchem.2020.128615.
R. K. Tiwari et al., “Impact of Fusarium dry rot on physicochemical attributes of potato tubers during postharvest storage,” Postharvest Biol. Technol., vol. 181, no. July, p. 111638, 2021, doi: 10.1016/j.postharvbio.2021.111638.
Q. Hu et al., “Potatoes dormancy release and sprouting commencement: A review on current and prospects,” Food Front., vol. 4, no. 3, pp. 1001–1018, 2023, doi: 10.1002/fft2.228.
M. Han et al., “Variable selection for the determination of the soluble solid content of potatoes with surface impurities in the visible/near-infrared range,” Biosyst. Eng., vol. 209, pp. 170–179, Sep. 2021, doi: 10.1016/j.biosystemseng.2021.06.019.
M. W. Haider et al., “Postharvest dormancy-related changes of endogenous hormones in relation to different dormancy-breaking methods of potato (Solanum tuberosum L.) tubers,” Front. Plant Sci., vol. 13, 2022, doi: 10.3389/fpls.2022.945256.
R. K. Tiwari et al., “Impact of Fusarium Infection on Potato Quality, Starch Digestibility, In Vitro Glycemic Response, and Resistant Starch Content,” J. Fungi, vol. 9, no. 4, 2023, doi: 10.3390/jof9040466.
G. Bedini, S. S. N. Chakravartula, M. Nardella, A. Bandiera, R. Massantini, and R. Moscetti, “Prediction of potato dry matter content by FT-NIR spectroscopy: Impact of tuber tissue on model performance,” Futur. Foods, vol. 8, no. September 2022, p. 100241, 2023, doi: 10.1016/j.fufo.2023.100241.
S. V. Gudkov et al., “Optical Methods for the Detection of Plant Pathogens and Diseases (Review),” AgriEngineering, vol. 5, no. 4, pp. 1789–1812, Oct. 2023, doi: 10.3390/agriengineering5040110.
M. E. Raypah, L. J. Zhi, L. Z. Loon, and A. F. Omar, “Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey,” Chemom. Intell. Lab. Syst., vol. 224, no. February, p. 104540, 2022, doi: 10.1016/j.chemolab.2022.104540.
A. Rady, D. E. Guyer, W. Kirk, and I. Donis-González, “Prediction of the Leaf Primordia of Potato Tubers Using Sensor Fusion and Wavelength Selection,” J. Imaging, vol. 5, p. null, 2019, doi: 10.1117/12.2621682.
B. Nieto-Ortega, J. J. Arroyo, C. Walk, N. Castañares, E. Canet, and A. Smith, “Near infrared reflectance spectroscopy as a tool to predict non-starch polysaccharide composition and starch digestibility profiles in common monogastric cereal feed ingredients,” Anim. Feed Sci. Technol., vol. 285, no. May 2021, 2022, doi: 10.1016/j.anifeedsci.2022.115214.
M. S. Attia, D. A. El-Wakil, A. H. Hashem, and A. M. Abdelaziz, “Antagonistic Effect of Plant Growth-Promoting Fungi Against Fusarium Wilt Disease in Tomato: In vitro and In vivo Study,” Appl. Biochem. Biotechnol., vol. 194, no. 11, pp. 5100–5118, 2022, doi: 10.1007/s12010-022-03975-9.
L. Cui, X. Wang, Y. Xu, Y. Li, and M. Han, “Hyperspectral reflectance imaging for water content and firmness prediction of potatoes by optimum wavelengths,” J. Consum. Prot. Food Saf., vol. 17, no. 1, pp. 51–64, Mar. 2022, doi: 10.1007/s00003-021-01343-z.
S. Farokhzad, A. Modaress Motlagh, P. Ahmadi Moghaddam, S. Jalali Honarmand, and K. Kheiralipour, “A machine learning system to identify progress level of dry rot disease in potato tuber based on digital thermal image processing,” Sci. Rep., vol. 14, no. 1, pp. 1–10, 2024, doi: 10.1038/s41598-023-50948-x.
M. F. R. Pahlawan, R. K. Wati, and R. E. Masithoh, “Development of a low-cost modular VIS/NIR spectroscopy for predicting soluble solid content of banana,” in IOP Conference Series: Earth and Environmental Science, 2021, vol. 644, no. 1. doi: 10.1088/1755-1315/644/1/012047.
V. Gomes, M. S. Reis, F. Rovira-Más, A. Mendes-Ferreira, and P. Melo-Pinto, “Prediction of sugar content in port wine vintage grapes using machine learning and hyperspectral imaging,” Processes, vol. 9, no. 7, 2021, doi: 10.3390/pr9071241.
A. A. Munawar, Zulfahrizal, H. Meilina, and E. Pawelzik, “Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: Comparison among regression approaches,” Comput. Electron. Agric., vol. 193, no. 3, p. 106657, 2022, doi: 10.1016/j.compag.2021.106657.
M. D. C. García-García et al., “Determination of Quality Parameters in Mangetout (Pisum sativum L. ssp. arvense) by Using Vis/Near-Infrared Reflectance Spectroscopy,” Sensors, vol. 22, no. 11, Jun. 2022, doi: 10.3390/s22114113.
E. Sim, J. Kim, H. S. Kim, H. Y. Park, and H. S. Choi, “Physicochemical characteristics of three potato cultivars grown in different cultivation periods,” J. Food Compos. Anal., vol. 119, no. November 2022, p. 105215, 2023, doi: 10.1016/j.jfca.2023.105215.
Y. Yang, Z. Liu, M. Huang, Q. Zhu, and X. Zhao, “Automatic detection of multi-type defects on potatoes using multispectral imaging combined with a deep learning model,” J. Food Eng., vol. 336, no. July 2022, p. 111213, 2023, doi: 10.1016/j.jfoodeng.2022.111213.
D. B. Rodriguez-Amaya, “Natural food pigments and colorants,” Curr. Opin. Food Sci., vol. 7, pp. 20–26, 2016, doi: 10.1016/j.cofs.2015.08.004.
C. Bravo et al., “Stability of Phenolic Compounds, Antioxidant Activity and Color Parameters in Colored-Flesh Potato Chips,” Molecules, vol. 28, no. 16, 2023, doi: 10.3390/molecules28166047.
F. Wang, C. Wang, S. Song, S. Xie, and F. Kang, “Study on starch content detection and visualization of potato based on hyperspectral imaging,” Food Sci. Nutr., vol. 9, no. 8, pp. 4420–4430, 2021, doi: 10.1002/fsn3.2415.
H. J. He, Y. Wang, M. Zhang, Y. Wang, X. Ou, and J. Guo, “Rapid determination of reducing sugar content in sweet potatoes using NIR spectra,” J. Food Compos. Anal., vol. 111, no. December 2021, p. 104641, 2022, doi: 10.1016/j.jfca.2022.104641.
K. B. Beć, J. Grabska, and C. W. Huck, “Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives,” Foods, vol. 11, no. 10, 2022.
B. M. Nicolai et al., “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy : A review,” Postharvest Biol. Technol., vol. 46, pp. 99–118, 2007, doi: 10.1016/j.postharvbio.2007.06.024.
N. U. Haase, “Prediction of potato processing quality by near infrared reflectance spectroscopy of ground raw tubers,” J. Near Infrared Spectrosc., vol. 19, no. 1, pp. 37–45, 2011, doi: 10.1255/jnirs.919.
L. S. Magwaza et al., “Assessment of rind quality of ‘Nules Clementine’ mandarin fruit during postharvest storage: 2. Robust Vis/NIRS PLS models for prediction of physico-chemical attributes,” Sci. Hortic. (Amsterdam)., vol. 165, pp. 421–432, 2014, doi: 10.1016/j.scienta.2013.09.050.
A. Phuphaphud, K. Saengprachatanarug, J. Posom, E. Taira, and L. Panduangnate, “Prediction and Classification of Energy Content in Growing Cane Stalks for Breeding Programmes Using Visible and Shortwave Near Infrared,” Sugar Tech, vol. 24, no. 5, pp. 1497–1509, 2022, doi: 10.1007/s12355-021-01075-2.
D. Saputro, D. Priambodo, M. Pahlawan, and R. Masithoh, “Classification of Cocoa Beans Based on Fermentation Level Using PLS-DA Combined with Visible Near-Infrared (VIS-NIR) Spectroscopy,” Proc. 2nd Int. Conf. Smart Innov. Agric. (ICoSIA 2021), vol. 19, no. ICoSIA 2021, pp. 100–106, 2022, doi: 10.2991/absr.k.220305.015.
D. N. Rahmia, E. Z. D. Pratiwi, M. F. R. Pahlawan, H. Z. Amanah, and R. E. Masithoh, “Non-destructive measurement of malic acid content of sapodilla fruit using visible near infrared (VisNIR) spectroscopy with variations in storage temperature,” IOP Conf. Ser. Earth Environ. Sci., vol. 1116, no. 1, p. 012027, Dec. 2022, doi: 10.1088/1755-1315/1116/1/012027.
B. Rongtong, T. Suwonsichon, P. Ritthiruangdej, and S. Kasemsumran, “Determination of water activity, total soluble solids and moisture, sucrose, glucose and fructose contents in osmotically dehydrated papaya using near-infrared spectroscopy,” Agric. Nat. Resour., vol. 52, no. 6, pp. 557–564, 2018, doi: 10.1016/j.anres.2018.11.023.
R. E. Masithoh, F. Roosmayanti, K. Rismiwandira, and M. F. R. Pahlawan, “Detection of Palm Sugar Adulteration by Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) Spectroscopy,” Sugar Tech, no. Livesey 2003, 2021, doi: 10.1007/s12355-021-01058-3.
B. Hou, Y. Hu, P. Zhang, and L. Hou, “Potato Late Blight Severity and Epidemic Period Prediction Based on Vis/NIR Spectroscopy,” Agric., vol. 12, no. 7, 2022, doi: 10.3390/agriculture12070897.
D. S. Kasampalis, P. Tsouvaltzis, K. Ntouros, A. Gertsis, D. Moshou, and A. S. Siomos, “Rapid nondestructive postharvest potato freshness and cultivar discrimination assessment,” Appl. Sci., vol. 11, no. 6, Mar. 2021, doi: 10.3390/app11062630.
M. Šulc, Z. Kotíková, L. Paznocht, and J. Lachman, “Changes in Carotenoid Profile during Potato (Solanum tuberosum L.) Tuber Maturation,” Am. J. Potato Res., vol. 98, no. 2, pp. 85–92, 2021, doi: 10.1007/s12230-020-09805-0.
L. M. Londoño-Giraldo, A. M. Baena-Pedroza, F. Martinez-Seidel, E. Corpas-Iguarán, and G. Taborda-Ocampo, “Gone wild: Integration of antioxidative, physicochemical, volatilomic and sensorial profiles ratify rustic relatives of cherry tomato as ideal mating partners,” Sci. Hortic. (Amsterdam)., vol. 277, no. October 2020, 2021, doi: 10.1016/j.scienta.2020.109814.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).