Electrical Properties for Non-destructive Determination of Free Fatty Acid and Moisture Content in Oil Palm Fruit
How to cite (IJASEIT) :
X. J. Tan, W. L. Cheor, K. S. Yeo, and W. Z. Leow, “Expert systems in oil palm precision agriculture: A decade systematic review,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 4, pp. 1569–1594, Apr. 2022, doi:10.1016/j.jksuci.2022.02.006.
A. R. M. Akbar, A. D. Wibowo, and R. Santoso, “Investigation on the Optimal Harvesting Time of Oil Palm Fruit,” Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), vol. 12, no. 2, p. 524, Jun. 2023, doi: 10.23960/jtep-l.v12i2.524-532.
E. Edyson, F. Murgianto, A. Ardiyanto, E. J. Astuti, and M. P. Ahmad, “Preprocessing Factors Affected Free Fatty Acid Content in Crude Palm Oil Quality,” Jurnal Ilmu Pertanian Indonesia, vol. 27, no. 2, pp. 177–181, Apr. 2022, doi: 10.18343/jipi.27.2.177.
E. Salim and Suharjito, “Hyperparameter optimization of YOLOv4 tiny for palm oil fresh fruit bunches maturity detection using genetics algorithms,” Smart Agricultural Technology, vol. 6, p. 100364, Dec. 2023, doi: 10.1016/j.atech.2023.100364.
S. N. Shaharuzzaman, F. H. Hashim, M. S. Sajab, and A. B. Huddin, “Analysis of Free Fatty Acids (FFA) in Palm Oils Based on the Raman Spectra,” in 2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), 2023, pp. 132–137. doi:10.1109/I2CACIS57635.2023.10193495.
A. Ruswanto, A. H. Ramelan, D. Praseptiangga, and I. B. B. Partha, “Effects of ripening level and processing delay on the characteristics of oil palm fruit bunches,” Int J Adv Sci Eng Inf Technol, vol. 10, no. 1, pp. 389–394, 2020, doi: 10.18517/ijaseit.10.1.10987.
R. Sinambela, T. Mandang, I. D. M. Subrata, and W. Hermawan, “Application of an inductive sensor system for identifying ripeness and forecasting harvest time of oil palm,” Sci Hortic, vol. 265, p. 109231, Apr. 2020, doi: 10.1016/j.scienta.2020.109231.
L. A. A. Antwi, F. Nimoh, P. Agyemang, and I. A. Apike, “Perception and adoption of free fatty acid reduction techniques by small scale palm oil processors: Evidence from Ghana,” J Agric Food Res, vol. 11, p. 100462, Mar. 2023, doi: 10.1016/j.jafr.2022.100462.
P. Ibba, A. Falco, B. D. Abera, G. Cantarella, L. Petti, and P. Lugli, “Bio-impedance and circuit parameters: An analysis for tracking fruit ripening,” Postharvest Biol Technol, vol. 159, p. 110978, Jan. 2020, doi: 10.1016/j.postharvbio.2019.110978.
J. Juansah, I. W. Budiastra, K. Dahlan, and K. B. Seminar, “Electrical Properties of Garut Citrus Fruits at Low Alternating Current Signal and its Correlation with Physicochemical Properties During Maturation,” Int J Food Prop, vol. 17, no. 7, pp. 1498–1517, Aug. 2014, doi: 10.1080/10942912.2012.723233.
L. Tang, S. Gao, W. Wang, X. Xiong, W. Han, and X. Li, “Moisture Content Detection of Tomato Leaves Based on Electrical Impedance Spectroscopy,” Commun Soil Sci Plant Anal, pp. 1–15, Oct. 2023, doi:10.1080/00103624.2023.2274046.
P. Bertemes-Filho, W. Laus Bertemes, R. Cavalieri, A. Torres Paré, J. Spessatto, and D. Savi, “Ripening classification of bananas (Musa acuminate) using electrical impedance spectroscopy and support vector machine,” Int J Biosens Bioelectron, vol. 6, no. 4, pp. 99–101, 2020, doi: 10.15406/ijbsbe.2020.06.00195.
S. Shekhar and K. Prasad, “Nondestructive Evaluation of Moisture Content for Spinach Leaf Powder Using Complex Impedance Spectroscopy,” Journal of the ASABE, vol. 66(2), pp. 415–421, 2023, doi: 10.13031/ja.14873.
G. M. Stojanović, Sinha A, Ali A, Jeoti V, Radoičić M, Marković D, Radetić M, “Impedance analysis of milk quality using functionalized polyamide textile-based sensor,” Comput Electron Agric, vol. 191, p. 106545, Dec. 2021, doi: 10.1016/j.compag.2021.106545.
S. Huh, H.-J. Kim, S. Lee, J. Cho, A. Jang, and J. Bae, “Utilization of Electrical Impedance Spectroscopy and Image Classification for Non-Invasive Early Assessment of Meat Freshness,” Sensors, vol. 21, no. 3, p. 1001, Feb. 2021, doi: 10.3390/s21031001.
W. Huang, J. Xia, X. Wang, Q. Zhao, M. Zhang, and X. Zhang, “Improvement of non-destructive detection of lamb freshness based on dual-parameter flexible temperature-impedance sensor,” Food Control, vol. 153, p. 109963, Nov. 2023, doi:10.1016/j.foodcont.2023.109963.
A. C. F. de O. Meira, L. C. de Morais, M. M. de O. Paula, S. M. Pinto, and J. V. de Resende, “Application of electrical impedance spectroscopy for the characterisation of yoghurts,” Int Dairy J, vol. 141, p. 105625, Jun. 2023, doi: 10.1016/j.idairyj.2023.105625.
S. Hao, J. Yuan, J. Cui, W. Yuan, H. Zhang, and H. Xuan, “The rapid detection of acacia honey adulteration by alternating current impedance spectroscopy combined with 1H NMR profile,” LWT, vol. 161, p. 113377, May 2022, doi: 10.1016/j.lwt.2022.113377.
N. F. Chin-Hashim, A. Y. Khaled, D. Jamaludin, and S. Abd Aziz, “Electrical Impedance Spectroscopy for Moisture and Oil Content Prediction in Oil Palm (Elaeis guineensis Jacq.) Fruitlets,” Plants, vol. 11, no. 23, Dec. 2022, doi: 10.3390/plants11233373.
W. Ji, C. Tang, B. Xu, and G. He, “Contact force modeling and variable damping impedance control of apple harvesting robot,” Comput Electron Agric, vol. 198, Jul. 2022, doi:10.1016/j.compag.2022.107026.
J. W. Lai, H. R. Ramli, L. I. Ismail, and W. Z. Wan Hasan, “Oil Palm Fresh Fruit Bunch Ripeness Detection Methods: A Systematic Review,” Agriculture, vol. 13, no. 1, p. 156, Jan. 2023, doi:10.3390/agriculture13010156.
M. Zhuang, G. Li, K. Ding, and G. Xu, “Research on the application of impedance control in flexible grasp of picking robot,” Advances in Mechanical Engineering, vol. 15, no. 4, p. 168781322311610, Apr. 2023, doi: 10.1177/16878132231161016.
J. Cheng, P. Yu, Y. Huang, G. Zhang, C. Lu, and X. Jiang, “Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection,” Agriculture, vol. 12, no. 10, p. 1525, Sep. 2022, doi: 10.3390/agriculture12101525.
P. Jash, R. K. Parashar, C. Fontanesi, and P. C. Mondal, “The Importance of Electrical Impedance Spectroscopy and Equivalent Circuit Analysis on Nanoscale Molecular Electronic Devices,” Adv Funct Mater, vol. 32, no. 10, Mar. 2022, doi:10.1002/adfm.202109956.
D. Wu, J. Sun, R. Silvennoinen, and T. Repo, “Root injury detection by impedance loss factor and hydraulic conductance of apple (Malus domestica), blackcurrant (Ribes nigrum) and blueberry (Vaccinium corymbosum) nursery plants,” Sci Hortic, vol. 328, p. 112864, Mar. 2024, doi: 10.1016/j.scienta.2024.112864.
T. Kojic, M. Simić, M. Vučinić-Vasić, and G. M. Stojanović, “Sensing system based on knitted electrodes for fruit quality evaluation,” J Food Eng, vol. 353, p. 111544, Sep. 2023, doi:10.1016/j.jfoodeng.2023.111544.
G. W. Jr. Latimer, “General Methods,” in Official Methods of Analysis of AOAC INTERNATIONAL, R. L. Beine, Ed., Oxford University PressNew York, 2023. doi: 10.1093/9780197610145.003.029.
Piekutowska M, Niedbała G, Piskier T, Lenartowicz T, Pilarski K, Wojciechowski T, Pilarska A, Czechowska-Kosacka A, “The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest,” Agronomy, vol. 11, no. 5, p. 885, Apr. 2021, doi:10.3390/agronomy11050885.
B. Konakoglu and A. Akar, “Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study,” Earth Sciences Research Journal, vol. 25, no. 4, pp. 371–382, 2021, doi:10.15446/esrj.v25n4.91195.
D. J. S. Chong, Y. J. Chan, S. K. Arumugasamy, S. K. Yazdi, and J. W. Lim, “Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production from palm oil mill effluent (POME),” Energy, vol. 266, p. 126449, Mar. 2023, doi: 10.1016/j.energy.2022.126449.
S. Ramjan and J. Sunkpho, Principles and Theories of Data Mining with RapidMiner. in Advances in Computer and Electrical Engineering. IGI Global, 2023. doi: 10.4018/978-1-6684-4730-7.
N. Baharun, N. F. M. Razi, S. Masrom, N. A. M. Yusri, and A. S. A. Rahman, “Auto Modelling for Machine Learning: A Comparison Implementation between Rapid Miner and Python,” International Journal of Emerging Technology and Advanced Engineering, vol. 12, no. 5, pp. 15–27, May 2022, doi: 10.46338/ijetae0522_03.
D. J. Murphy, B. O’ Brien, M. O’ Donovan, T. Condon, and M. D. Murphy, “A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures,” Information Processing in Agriculture, vol. 9, no. 2, pp. 243–253, Jun. 2022, doi:10.1016/j.inpa.2021.04.012.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).