Analysis of Factors Affecting Spectrum Sensing in an IRS based Wireless Network
How to cite (IJASEIT) :
Z. Chu, Z. Zhu, F. Zhou, M. Zhang, and N. Al-Dhahir, “Intelligent reflecting surface assisted wireless powered sensor networks for Internet of Things,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4877–4889, Jul. 2021, doi: 10.1109/tcomm.2021.3074539.
W. Mei, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless networks: From single-reflection to multireflection design and optimization,” Proc. IEEE, vol. 110, no. 9, pp. 1380–1400, Sep. 2022, doi: 10.1109/jproc.2022.3170656.
D. Pérez-Adán, Ó. Fresnedo, J. P. Gonzalez-Coma, and L. Castedo, “Intelligent reflective surfaces for wireless networks: An overview of applications, approached issues, and open problems,” Electronics, vol. 10, no. 19, p. 2345, Oct. 2021, doi: 10.3390/electronics10192345.
Y. Wang, B. Ji, and D. Li, “IRS assist wireless communication: Scenarios, advantages, convergence,” J. Comput. Electron. Inf. Manag., vol. 10, no. 3, pp. 40–45, 2023, doi: 10.54097/jceim.v10i3.8679.
O. Bouhamed, H. Ghazzai, H. Besbes, and Y. Massoud, “A UAV-assisted data collection for wireless sensor networks: Autonomous navigation and scheduling,” IEEE Access, vol. 8, pp. 110446–110460, 2020, doi: 10.1109/access.2020.3002538.
Z. Zhang, W. Chen, Q. Wu, Z. Li, X. Zhu, and J. Chen, “Multiple intelligent reflecting surfaces collaborative wireless localization system,” IEEE Trans. Wireless Commun., vol. 24, no. 1, pp. 134–148, Jan. 2025, doi: 10.1109/twc.2024.3488822.
K. Aswini and M. Surendar, “Performance analyses of intelligent reflecting surface aided downlink multi-user rate-splitting multiple access system for 6G applications,” Comput. Netw., vol. 242, p. 110271, 2024, doi: 10.1016/j.comnet.2024.110271.
V. Srivastava and B. Prasad, “IRS assisted spectrum sensing in cognitive radio network with grey wolf optimization,” Phys. Commun., vol. 66, p. 102436, 2024, doi: 10.1016/j.phycom.2024.102436.
L. Al-Zabin, O. Al-Wesabi, H. Al Hajri, N. Abdullah, B. Khudayer, and H. Al Lawati, “Probabilistic detection of indoor events using a wireless sensor network-based mechanism,” Sensors, vol. 23, no. 15, p. 6198, 2023, doi: 10.3390/s23156198.
S. Sur and R. Bera, “Intelligent reflecting surface assisted MIMO communication system: A review,” Phys. Commun., vol. 47, p. 101386, 2021, doi: 10.1016/j.phycom.2021.101386.
W. Tan, Q. Zhou, W. Tan, L. Yang, and C. Li, “Performance analysis of intelligent reflecting surface assisted wireless communication system,” Comput. Model. Eng. Sci., vol. 137, no. 1, pp. 775–787, 2023, doi: 10.32604/cmes.2023.027427.
Z. Wang, W. Wu, F. Zhou, B. Wang, Q. Wu, T. Quek, and C. Byoung, “IRS-enhanced spectrum sensing and secure transmission in cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 23, no. 8, pp. 10271–10286, Aug. 2024, doi: 10.1109/twc.2024.3370812.
B. Zheng, X. Xiong, T. Ma, J. Tang, D. Ng, and A. Swindlehurst, “Intelligent reflecting surface-enabled anti-detection for secure sensing and communications,” IEEE Wireless Commun. (Early Access), 2025, doi: 10.1109/mwc.006.2400129.
W. Wu, Z. Wang, L. Yuan, F. Zhou, F. Lang, and B. Wang, “IRS-enhanced energy detection for spectrum sensing in cognitive radio,” IEEE Wireless Commun. Lett., vol. 10, no. 10, pp. 2254–2258, Oct. 2021, doi: 10.1109/lwc.2021.3099121.
K. Aswini and M. Surendar, “Capacity analysis of intelligent reflecting surface assisted RSMA system with perfect and imperfect CSI for 6G,” J. Phys.: Conf. Ser., vol. 2466, no. 1, p. 012001, 2023, doi: 10.1088/1742-6596/2466/1/012001.
G. Peng and W. Wu, “Fusion schemes based on IRS-enhanced cooperative spectrum sensing for cognitive radio networks,” Electronics, vol. 11, no. 16, p. 2533, 2022, doi: 10.3390/electronics11162533.
R. Kumar and S. Singh, “Intelligent reflecting surface framework for ED based spectrum sensing,” Int. J. Wirel. Inf. Networks, vol. 31, no. 2, pp. 155–162, 2024, doi: 10.1007/s10776-024-00619-z.
I. Yildirim, F. Kilinc, E. Basar, and G. Alexandropoulos, “Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1692–1696, May 2021, doi: 10.1109/lcomm.2021.3054819.
R. Alhamad, “Spectrum sensing using intelligent reflecting surfaces with multi-antennas energy harvesting,” Wirel. Pers. Commun., vol. 135, pp. 1103–1116, 2024, doi: 10.1007/s11277-024-11110-6.
R. Alhamad, “Cognitive radio networks using intelligent reflecting surfaces,” Comput. Syst. Sci. Eng., vol. 43, no. 2, pp. 751–765, 2022, doi: 10.32604/csse.2022.021932.
S. Lin, B. Zheng, F. Chen, and R. Zhang, “Intelligent reflecting surface-aided spectrum sensing for cognitive radio,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 928–932, May 2022, doi: 10.1109/lwc.2022.3149834.
M. Saber et al., “Reconfigurable intelligent surfaces improved spectrum sensing in cognitive radio networks,” Procedia Comput. Sci., vol. 207, pp. 4113–4122, 2022, doi: 10.1016/j.procs.2022.09.474.
H. Tran and B. Lee, “Enhancing reconfigurable intelligent surface-enabled cognitive analysis and parameter optimization,” Sensors, vol. 24, no. 15, p. 4869, 2024, doi: 10.3390/s24154869.
R. Kumar, S. Singh, S. Chauhan, A. Anand, and A. Kumar, “ED based spectrum sensing over IRS-assisted Rayleigh-FTR fading channels,” AEU - Int. J. Electron. Commun., vol. 171, p. 154908, 2023, doi: 10.1016/j.aeue.2023.154908.
R. Alhamad and H. Boujemaa, “Intelligent reflecting surfaces with adaptive transmit power for underlay cognitive radio networks,” Wirel. Commun. Mobile Comput., vol. 2022, p. 2787466, 2022, doi: 10.1155/2022/2787466.
A. Elbir, K. Mishra, M. Shankar, and S. Chatzinotas, “The rise of intelligent reflecting surfaces in integrated sensing and communications paradigms,” IEEE Netw., vol. 37, no. 6, pp. 223–241, Nov. 2023, doi: 10.1109/mnet.128.2200446.
J. Lorincz, I. Ramljak, and D. Begušić, “A review of the noise uncertainty impact on energy detection with different OFDM system designs,” Comput. Commun., vol. 148, pp. 185–208, 2019, doi: 10.1016/j.comcom.2019.09.013.
K. Felizardo and E. Arboleda, “Next-generation antennas key enabler: Intelligent reflecting surfaces (IRS) technology potential to address limitations of traditional antennas,” Int. J. Sci. Res. Archive, vol. 12, no. 1, pp. 2608–2613, 2024, doi: 10.30574/ijsra.2024.12.1.1136.
X. Shao, C. You, and R. Zhang, “Intelligent reflecting surface aided wireless sensing: Applications and design issues,” IEEE Wireless Commun., vol. 31, no. 3, pp. 383–389, Jun. 2024, doi: 10.1109/mwc.004.2300058.
J. An, H. Li, D. Ng, and C. Yuen, “Fundamental detection probability vs. achievable rate tradeoff in integrated sensing and communication systems,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 9835–9853, Dec. 2023, doi: 10.1109/twc.2023.3273850.
F. Okogbaa, Q. Ahmed, F. Khan, W. Abbas, S. Zaidi, and T. Alade, “Design and application of intelligent reflecting surface (IRS) for beyond 5G wireless networks: A review,” Sensors, vol. 22, no. 7, p. 2436, 2022, doi: 10.3390/s22072436.
Y. Sun, J. Huang, and F. Wei, “Performance evaluation of distributed multi-agent IoT monitoring based on intelligent reflecting surface,” EURASIP J. Adv. Signal Process., vol. 2024, no. 4, 2024, doi: 10.1186/s13634-024-01132-4.
S. Nandan and M. Rahiman, “Intelligent reflecting surface (IRS) assisted mmWave wireless communication systems: A survey,” J. Commun., vol. 17, no. 9, pp. 745–760, 2022, doi: 10.12720/jcm.17.9.745-760.
A. Singh, A. Maurya, R. Prakash, P. Thakur, and B. Tiwari, “Reconfigurable intelligent surface with 6G for industrial revolution: Potential applications and research challenges,” Paladyn, J. Behav. Robot., vol. 14, no. 1, p. 20220114, 2023, doi: 10.1515/pjbr-2022-0114.
M. Sejan, M. Rahman, B. Shin, J. Oh, Y. You, and H. Song, “Machine learning for intelligent-reflecting-surface-based wireless communication towards 6G: A review,” Sensors, vol. 22, no. 14, p. 5405, 2022, doi: 10.3390/s22145405.
D. Wang, J. Zhang, and Q. Zhang, “Intelligent reflecting surface-assisted secrecy wireless communication with imperfect CSI,” Phys. Commun., vol. 44, p. 101235, 2021, doi: 10.1016/j.phycom.2020.101235.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).