Optimization of Robotic Movement: Applying Lie Algebra to Improve the Performance of mBot2
How to cite (IJASEIT) :
C. Muller, “World Robotics 2023,” Frankfurt am Main, 2023. Accessed: Sep. 03, 2024. [Online]. Available: https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2023.pdf
D. Georgieva and T. Georgieva-Trifonova, “Developing Mathematical Competencies Through Makeblock mBot Programming in Computer Modelling Education,” TEM Journal, vol. 12, no. 4, pp. 2437–2447, Nov. 2023, doi: 10.18421/TEM124-56.
J. Deray and J. Solà, “Manif: A micro Lie theory library for state estimation in robotics applications,” J Open Source Softw, vol. 5, no. 46, p. 1371, Feb. 2020, doi: 10.21105/joss.01371.
C. C. Cossette, M. Cohen, V. Korotkine, A. Del Castillo Bernal, M. A. Shalaby, and J. R. Forbes, “Navlie: A Python Package for State Estimation on Lie Groups,” in IEEE International Conference on Intelligent Robots and Systems, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 5282–5287. doi:10.1109/IROS55552.2023.10342362.
J. M. Selig, “Lie Groups and Lie Algebras in Robotics,” in Computational Noncommutative Algebra and Applications, J. Byrnes, Ed., 2004. [Online]. Available: http://www.wtv-books.de/nato-pco.htm
C. Armanini, I. Hussain, M. Z. Iqbal, D. Gan, D. Prattichizzo, and F. Renda, “Discrete Cosserat Approach for Closed-Chain Soft Robots: Application to the Fin-Ray Finger,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2083–2098, Dec. 2021, doi:10.1109/TRO.2021.3075643.
P. Raj and D. Pal, “Lie Algebraic Criteria for Stability of Switched Systems of Differential Algebraic Equations (DAEs),” IEEE Control Syst Lett, vol. 5, no. 4, pp. 1333–1338, Oct. 2021, doi:10.1109/LCSYS.2020.3036577.
E. Gallo, “The SO(3) and SE(3) Lie Algebras of Rigid Body Rotations and Motions and their Application to Discrete Integration, Gradient Descent Optimization, and State Estimation,” Universidad Politécnica de Madrid, Madrid, 2022. doi: 10.48550/arXiv.2205.12572.
S. Kousar, S. Arshad, N. Kausar, and T. P. Hong, “Construction of Nilpotent and Solvable Lie Algebra in Picture Fuzzy Environment,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, Dec. 2023, doi: 10.1007/s44196-023-00213-w.
S. Mondal, R. Ray, S. R. N., and S. Nandy, “Intelligent controller for nonholonomic wheeled mobile robot: A fuzzy path following combination,” Math Comput Simul, vol. 193, pp. 533–555, Mar. 2022, doi: 10.1016/j.matcom.2021.10.028.
C. Wang, J. Ji, Z. Miao, and J. Zhou, “Formation tracking of multi-robot systems with switching directed topologies based on Udwadia-Kalaba approach,” Appl Math Model, vol. 126, pp. 147–158, Feb. 2024, doi: 10.1016/j.apm.2023.10.035.
M. Sangalli, S. Blusseau, S. Velasco-Forero, and J. Angulo, “Differential Invariants for SE(2)-Equivariant Networks,” in Proceedings - International Conference on Image Processing, ICIP, IEEE Computer Society, 2022, pp. 2216–2220. doi:10.1109/ICIP46576.2022.9897301.
R. Chand, S. A. Kumar, R. P. Chand, and S. Reddy, “A Car-like Mobile Manipulator with an n-link Prismatic Arm,” in 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/CSDE53843.2021.9718408.
P. Coelho and U. Nunes, “Lie algebra application to mobile robot control: A tutorial,” Robotica, vol. 21, no. 5, pp. 483–493, Sep. 2003, doi: 10.1017/S0263574703005149.
P. Xu, F. Long, Q. Wang, J. Tian, X. Yang, and L. Mo, “Finite-Time Stability for Caputo Nabla Fractional-Order Switched Linear Systems,” Fractal and Fractional, vol. 6, no. 11, Nov. 2022, doi:10.3390/fractalfract6110621.
C. M. Zagabe and A. Mauroy, “Switched nonlinear systems in the Koopman operator framework: Toward a Lie-algebraic condition for uniform stability,” in 2021 European Control Conference (ECC), Delft: IEEE, 2021, pp. 281–288. doi:10.23919/ECC54610.2021.9655200.
M. Ceccarelli, S. K. Agrawal, V. Glazunov, A. Hernández, J. Carlos, and J. Correa, Advances in Service and Industrial Robotics. Springer, 2023.
A. Goudar, T. D. Barfoot, and A. P. Schoellig, “Continuous-Time Range-Only Pose Estimation,” in Proceedings - 2023 20th Conference on Robots and Vision, CRV 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 29–36. doi:10.1109/CRV60082.2023.00012.
Z. Fan et al., “A Cartesian-Based Trajectory Optimization with Jerk Constraints for a Robot,” Entropy, vol. 25, no. 4, Apr. 2023, doi:10.3390/e25040610.
R. Chand, R. P. Chand, M. Assaf, P. R. Naicker, S. V. Narayan, and A. F. Hussain, “Embedded FPGA-based Motion Planning and Control of a Dual-arm Car-like Robot,” in 2022 IEEE 7th Southern Power Electronics Conference, SPEC 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi:10.1109/SPEC55080.2022.10058252.
L. Gui, C. Zeng, J. Luo, and X. Yang, “Place Recognition through Multiple LiDAR Scans Based on the Hidden Markov Model,” Sensors, vol. 24, no. 11, Jun. 2024, doi: 10.3390/s24113611.
H. Wang, Y. Mao, and J. Du, “Continuum Robots and Magnetic Soft Robots: From Models to Interdisciplinary Challenges for Medical Applications,” Mar. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/mi15030313.
H. Naidu and P. Ramtekkar, “An Innovative Affordable Robot to Defuse Landmines using IoT and Wireless Communication Technique to save precious life,” in International Conference on Emerging Trends in Engineering and Technology, ICETET, IEEE Computer Society, 2023. doi: 10.1109/ICETET-SIP58143.2023.10151542.
J. D. D. Ducut, I. C. Valenzuela, E. P. Dadios, and R. K. C. Billones, “Design and Development of Robotic Arm Movements and Body Frame for a Social Robot for Graduation Rites,” in 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/HNICEM54116.2021.9731930.
F. C. Park, J. E. Bobrow, and S. R. Ploen, “A Lie Group Formulation of Robot Dynamics,” Int J Rob Res, vol. 14, no. 6, pp. 609–618, 1995, doi: 10.1177/027836499501400606.
S. R. Ploen and F. C. Park, “A Lie group formulation of the dynamics of cooperating robot systems,” Rob Auton Syst, vol. 21, no. 3, pp. 279–287, 1997, doi: 10.1016/S0921-8890(96)00802-0.
B. C. Stacey, Springer Briefs in Mathematical Physics Volume 41: A First Course in the Sporadic SICs. 2021. [Online]. Available: http://www.springer.com/series/11953
M. Majumdar and A. Bhattacharyya, An introduction to smooth manifolds. Springer Nature, 2023. doi: 10.1007/978-981-99-0565-2.
K. H. Hofmann and S. A. Morris, The Structure of Compact Groups. Boston: Walter de Gruyter GmbH, Berlin/Boston, 2023. doi:10.1515/9783111172606.
M. Ceccarelli, Fundamentals of Mechanics of Robotic Manipulation, vol. 112. in Mechanisms and Machine Science, vol. 112. Cham: Springer International Publishing, 2022. doi: 10.1007/978-3-030-90848-5.
Y. Ren, “The BGG Category for Generalized Reductive Lie Algebras,” Frontiers of Mathematics, vol. 19, no. 1, pp. 127–142, 2024, doi: 10.1007/s11464-021-0352-8.
D. Gourevitch, E. Sayag, and I. Karshon, “Annihilator varieties of distinguished modules of reductive Lie algebras,” Forum of Mathematics, Sigma, vol. 9, 2021, doi: 10.1017/fms.2021.42.
Z. Chen and Y. Yu, “Biderivations and strong commutativity-preserving maps on parabolic subalgebras of simple Lie algebras,” Linear and Multilinear Algebra, vol. 70, no. 14, pp. 2659–2671, 2022, doi: 10.1080/03081087.2020.1809621.
M. Sahai and B. Sharan, “On the lower Lie nilpotency index of a group algebra,” Quaestiones Mathematicae, vol. 44, no. 10, pp. 1347–1354, 2021, doi: 10.2989/16073606.2020.1795740.
N. Torres Alberto, L. Joseph, V. Padois, and D. Daney, “A linearization method based on Lie algebra for pose estimation in a time horizon A linearization method based on Lie algebra for pose estimation in a time horizon A linearization method based on Lie algebra for pose estimation in a time horizon,” 2022. [Online]. Available: https://hal.science/hal-03621688v1
C. J. Bordin, C. G. De Figueredo, and M. G. S. Bruno, “Diffusion Particle Filtering on the Special Orthogonal Group Using Lie Algebra Statistics,” IEEE Signal Process Lett, vol. 29, pp. 2058–2062, 2022, doi: 10.1109/LSP.2022.3210870.
S. Goodarzi and A. Khotanloo, “Lie Centralizers and generalized Lie derivations on prime rings by local actions,” Commun Algebra, vol. 51, no. 12, pp. 5277–5286, 2023, doi:10.1080/00927872.2023.2228429.
M. Abdaoui, “2-Local superderivations on infinite-dimensional Lie superalgebras,” Commun Algebra, vol. 52, no. 3, pp. 1124–1141, 2024, doi: 10.1080/00927872.2023.2257797.
J. Zhai, Z. Geng, and J. Yang, “A Specified Time Obstacle Avoidance Control Strategy for Wheeled Mobile Robots,” in Proceedings of the 33rd Chinese Control and Decision Conference, CCDC 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 4692–4696. doi:10.1109/CCDC52312.2021.9602322.
H. Zhang, D. Ye, Y. Xiao, and Z. Sun, “Adaptive Control on SE(3) for Spacecraft Pose Tracking with Harmonic Disturbance and Input Saturation,” IEEE Trans Aerosp Electron Syst, vol. 58, no. 5, pp. 4578–4594, Oct. 2022, doi: 10.1109/TAES.2022.3165524.
P. W. Prasetyo, H. Marubayashi, and I. E. Wijayanti, “On the restricted graded Jacobson radical of rings of Morita context,” Turkish Journal of Mathematics, vol. 46, no. Special Issue 2, pp. 1985–1993, 2022, doi:10.55730/1300-0098.3246.
G. J. Cooke and R. G. McDougall, “A generalization of the lower radical type construction for strict and base radical classes,” Commun Algebra, 2024, doi: 10.1080/00927872.2024.2337279.
H. V. Khánh, “Leavitt Path Algebras in Which Every Lie Ideal is an Ideal and Applications,” Transformation Groups, 2024, doi:10.1007/s00031-024-09848-1.
P. Raj and D. Pal, “On Stability of Switched Differential Algebraic Equations: A Decomposition-Based Approach,” IEEE Control Syst Lett, vol. 8, pp. 358–363, 2024, doi: 10.1109/LCSYS.2024.3382612.
P. J. McCarthy and C. Nielsen, “Global Sampled-Data Regulation of a Class of Fully Actuated Invariant Systems on Simply Connected Nilpotent Matrix Lie Groups,” IEEE Trans Automat Contr, vol. 67, no. 1, pp. 436–442, Jan. 2022, doi: 10.1109/TAC.2021.3058053.
Y. Chen and S. Trenn, “Stability analysis of switched nonlinear differential-algebraic equations via nonlinear Weierstrass form,” 2022 European Control Conference (ECC), pp. 1091–1096, Jul. 2022, doi:10.23919/ecc55457.2022.9838148.
S. Lin and X. Liu, “Passivity and Control for Multiweighted and Directed Fractional-Order Network Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 4, pp. 1733–1746, Apr. 2023, doi: 10.1109/TCSI.2023.3239907.
I. E. Wijayanti, M. Ardiyansyah, and P. W. Prasetyo, “On a Class of λ-Modules,” Ukrainian Mathematical Journal, vol. 73, no. 3, 2021, doi: 10.1007/s11253-021-01931-0.
V. Joukov, J. Cesic, K. Westermann, I. Markovic, I. Petrovic, and D. Kulic, “Estimation and Observability Analysis of Human Motion on Lie Groups,” IEEE Trans Cybern, vol. 50, no. 3, pp. 1321–1332, Mar. 2020, doi: 10.1109/TCYB.2019.2933390.
G. Li, Z. Li, C. Y. Su, and T. Xu, “Active Human-Following Control of an Exoskeleton Robot with Body Weight Support,” IEEE Trans Cybern, vol. 53, no. 11, pp. 7367–7379, Nov. 2023, doi:10.1109/TCYB.2023.3253181.
L. Chen et al., “Research Ideas Discovery via Hierarchical Negative Correlation,” IEEE Trans Neural Netw Learn Syst, vol. 35, no. 2, pp. 1639–1650, Feb. 2024, doi: 10.1109/TNNLS.2022.3184498.
Q. Li, Y. Wang, and F. Lv, “Semantic Correlation Attention-Based Multiorder Multiscale Feature Fusion Network for Human Motion Prediction,” IEEE Trans Cybern, vol. 54, no. 2, pp. 825–838, Feb. 2024, doi: 10.1109/TCYB.2022.3184977.
X. Peng, Z. Sun, M. Chen, and Z. Geng, “Arbitrary Configuration Stabilization Control for Nonholonomic Vehicle With Input Saturation: A c-Nonholonomic Trajectory Approach,” IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1663–1672, Feb. 2022, doi: 10.1109/TIE.2021.3060674.
J. Jin, Y. G. Kim, S. G. Wee, D. H. Lee, and N. Gans, “A Stable Switched-System Approach to Collision-Free Wheeled Mobile Robot Navigation,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 86, no. 3–4, pp. 599–616, Jun. 2017, doi:10.1007/s10846-017-0467-z.
X. Li, Z. Xu, Z. Su, H. Wang, and S. Li, “Distance- and Velocity-Based Simultaneous Obstacle Avoidance and Target Tracking for Multiple Wheeled Mobile Robots,” IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 2, pp. 1736–1748, Feb. 2024, doi:10.1109/TITS.2023.3312373.
A. Ait Ladel, A. Benzaouia, R. Outbib, M. Ouladsine, and E. M. El Adel, “Robust fault tolerant control of continuous-time switched systems: An LMI approach,” Nonlinear Analysis: Hybrid Systems, vol. 39, Feb. 2021, doi: 10.1016/j.nahs.2020.100950.
J. L. Awange, B. Paláncz, R. H. Lewis, and L. Völgyesi, Mathematical Geosciences Hybrid Symbolic-Numeric Methods Second Edition, 2nd ed. Springer, 2023. doi: 10.1007/978-3-030-92495-9.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).