International Journal on Advanced Science, Engineering and Information Technology, Vol. 9 (2019) No. 3, pages: 766-771, DOI:10.18517/ijaseit.9.3.6005

Enhanced Manhattan-based Clustering using Fuzzy C-Means Algorithm for High Dimensional Datasets

Joven A. Tolentino, Bobby D. Gerardo


The problem of mining a high dimensional data includes a high computational cost, a high dimensional dataset composed of thousands of attribute and or instances. The efficiency of an algorithm, specifically, its speed is oftentimes sacrificed when this kind of dataset is supplied to the algorithm. Fuzzy C-Means algorithm is one which suffers from this problem. This clustering algorithm requires high computational resources as it processes whether low or high dimensional data. Netflix data rating, small round blue cell tumors (SRBCTs) and Colon Cancer (52,308, and 2,000 of attributes and 1500, 83 and 62 of instances respectively) dataset were identified as a high dimensional dataset. As such, the Manhattan distance measure employing the trigonometric function was used to enhance the fuzzy c-means algorithm. Results show an increase on the efficiency of processing large amount of data using the Netflix ,Colon cancer and SRCBT an (39,296, 38,952 and 85,774 milliseconds to complete the different clusters, respectively) average of 54,674 milliseconds while Manhattan distance measure took an average of (36,858, 36,501 and 82,86 milliseconds, respectively)  52,703 milliseconds for the entire dataset to cluster. On the other hand, the enhanced Manhattan distance measure took (33,216, 32,368 and 81,125 milliseconds, respectively) 48,903 seconds on clustering the datasets. Given the said result, the enhanced Manhattan distance measure is 11% more efficient compared to Euclidean distance measure and 7% more efficient than the Manhattan distance measure respectively.


fuzzy C-Means; high dimensional dataset; Manhattan distance; clustering.

Viewed: 625 times (since abstract online)

cite this paper     download